

Funded by the European Union.

Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the granting authority can be held responsible for them.

URBAN HEALTH

Knowledge Hub Booklet

Led by:

POLIBIENESTAR

Vniver§itat 🌣 🗈 València

Introduction

We have conducted a review of **longitudinal observational epidemiological studies**, mostly quasi-experimental, analysing the association between changes in the physical urban environment and the incidence of non-communicable diseases (NCDs), specifically type 2 diabetes mellitus (T2DM) and cardiovascular diseases (CVDs), as well as associated risk behaviours.

The aim of this booklet is not only to provide a synthesis of the available evidence on the real impact of interventions, but also to serve as an empirical basis for developing our own quasi-experimental study. We have first included a section containing the most comprehensive umbrella review conducted to date on the subject (Zhang et al., 2022), as well as the seven systematic reviews analysed by the authors, which predominantly include quasi-experimental and longitudinal observational studies. We have then provided primary studies, many of which are part of the best available evidence identified by the reviews. The vast majority of interventions covered by the included studies are plausibly causal of increased physical activity, although there are also studies on healthy eating habits, and even one quasi-experimental study analysing the impact of a smoking ban on a beach, as well as two studies analysing the impact of alcohol availability. Only one study (McGavock et al., 2022) strictly meets the criteria of quasi-experimental study design and analyses the impact on health outcomes (incidence of NCDs) rather than behavioural outcomes, using aggregate health registry data at territorial level. This scarcity is most likely due to the difficulty of following cohorts for long enough for detectable effects to appear, coupled with the demands of statistical power and the location of the endpoints considered in the causal chain.

This booklet will be updated periodically throughout the project's life cycle.

Introduction

URBAN HEALTH

Glossary

BMI: Body Mass Index.

CVD: Cardiovascular Disease.

GIS: Geographic Information System.

HR: Hazard Ratio.

IRR: Incidence Rate Ratio.

MET: Metabolic Equivalent.

MVPA: Moderate to Vigorous Physical

Activity.

OR: Odds Ratio.

PA: Physical Activity.

QoL: Quality of Life

SES: Socio-Economic Status.

SOPARC: System for Observing Play and

Recreation in Communities.

Funded by the European Union.

Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the granting authority can be held responsible for them.

URBAN HEALTH

Umbrella and systematic reviews of quasi-experimental and observational studies

Zhang, Y., Koene, M., Reijneveld, S. A., Tuinstra, J., Broekhuis, M., van der Spek, S., & Wagenaar, C. (2022). The impact of interventions in the built environment on physical activity levels: a systematic umbrella review. The International Journal of Behavioral Nutrition and Physical Activity, 19(1), 156. https://doi.org/10.1186/s12966-022-01399-6

Background

Urban form influences PA and health; walkable, green neighborhoods support PA, yet causal evidence on specific urban interventions is scarce and scattered. Pre-post designs help isolate intervention effects. This umbrella review aggregates systematic reviews of builtenvironment changes that target PA to inform healthier city design.

Objectives ()

To synthesise evidence from systematic reviews of intentional urban built-environment interventions accompanied by pre-post-measurement—on their effects on PA, and to identify intervention types most promising for promoting population PA.

Design

Data: PRISMA 2020/JBI umbrella review; seven databases (2010-2022). Included seven systematic reviews (217 primary studies).

Eligibility: Urban built-environment interventions with pre-post PA measurement.

Outcome: PA as usage, combined PA, and active travel.

Analysis: Qualitative synthesis classifying built-environment changes as positive/null/negative; "promising" if ≥60% positive; JBI quality appraisal (3 high, 4 moderate).

Results ::

Across 274 built-environment changes, 54.4% were positive for PA, 40.9% null, 4.8% negative.

Most promising: park renovations; adding exercise equipment; new (pocket) parks; improving cycling environments; improving walking & cycling environments; multicomponent initiatives for active travel; and enhancing availability/accessibility of destinations.

Walking-only upgrades showed mixed effects.

Comprehensive, multi-component actions tended to perform better.

Background

Observational evidence links neighbourhood design with children's activity, diet, obesity and mental health. This review synthesises intervention studies modifying urban environments to test causal impacts. Strengths include a multi-database search; key limitations are opportunistic, non-randomised designs, subjective outcomes, and scarce follow-up, which weaken inference.

Objectives

To examine evidence from **intervention studies** that altered urban environments and reported at least one health behaviour or physical/mental health outcome among **children** and **young** people, presenting a narrative synthesis.

Design

Data: Embase, Geobase, Medline, PsycINFO, TRIS, Web of Science (to 29 Oct 2014).

Population: Children/young people in high-income urban settings.

Outcomes: Health behaviours (e.g., active travel) and physical/mental health.

Design: Eligible intervention studies (RCTs to before-after).

Analysis: Narrative synthesis. Risk of bias assessed with a validated tool. PRISMA

guidelines followed.

Results

Included 33 studies (27 interventions).

Urban design changes can improve child safety and support active travel, with the clearest gains from road-traffic calming.

Park/playground refurbishments seldom boosted use or physical activity.

Multi-component, community-wide programmes show promise for weight outcomes.

Overall certainty is low given non-randomised designs, subjective measures, short follow-up, and heterogeneity.

Mental health impacts were not evaluated.

Hunter, R. F., Cleland, C., Cleary, A., Droomers, M., Wheeler, B. W., Sinnett, D., ... & Braubach, M. (2019). Environmental, health, wellbeing, social and equity effects of urban green space interventions: A meta-narrative evidence synthesis. Environment International, 130, 104923. https://doi.org/10.1016/j.envint.2019.104923

Background

As urbanisation accelerates, preserving and enhancing urban green space (UGS) may support health, wellbeing. social cohesion and environmental quality. However, actionable guidance on how to design or promote UGS to realise these benefits remains limited. This metanarrative synthesis integrates diverse traditions and examines advantages, limitations, and equity implications of UGS interventions.

Objectives

To synthesise evidence on the health, wellbeing, social, environmental and equity effects of UGS interventions (and influencing factors), convene an expert panel to contextualise findings, and formulate recommendations for policy, practice and research.

Design

Review type: Meta-narrative (RAMESES).

Data: 8 databases + hand-search, 6997 records screened, 38 studies included.

Population: Any age, urban settings.

Interventions: Physical UGS change alone or with promotion.

Outcome: Health, wellbeing, social, environmental, equity.

Analysis: Narrative synthesis. Quality/risk-of-bias assessment. PROGRESS-plus for

equity. Expert workshop for peer review.

Results ::

Dual-approach park and greenway/trail interventions (physical change + promotion) showed **strong effects** on **park use** and PA (7/7; 3/3).

Greening vacant lots improved health/wellbeing (e.g., stress↓) and social outcomes (crime \downarrow , safety \uparrow) (4/4).

Street trees (3/4) and green-built storm-water projects (6/7) improved environmental outcomes.

Single-component park/trail changes were often ineffective (7/12 null). Evidence on equity impacts was insufficient.

Kärmeniemi, M., Lankila, T., Ikäheimo, T., Koivumaa-Honkanen, H., & Korpelainen, R. (2018). The built environment as a determinant of physical activity: a systematic review of longitudinal studies and natural experiments. Annals of Behavioral Medicine, 52(3), 239-251. https://doi.org/10.1093/abm/kax043

Background I

Physical inactivity contributes to chronic disease and premature mortality. Built-environment features accessibility, land-use mix, and transport systems—shape PA by influencing destinations and travel modes. Longitudinal evidence is needed to inform causal links and guide planning for compact, activity-supportive cities.

Objectives ()

To systematically review longitudinal studies and natural experiments assessing how changes in the built environment—particularly accessibility, land-use mix, and new walking/cycling/public transport infrastructure—affect overall, transport-related and leisure PA.

Design

Data: Six databases to 11 December 2015, 51 studies included.

Population: General populations in high-income countries.

Design: Prospective cohorts and natural experiments.

Exposure: Changes in built environment—particularly accessibility, land-use mix, and

new walking/cycling/public transport infrastructure.

Outcome: Overall, transport and leisure physical activity.

Analysis: Narrative synthesis of adjusted longitudinal associations; study quality.

Results ::

Built-environment change was consistently linked to higher PA.

New walking/cycling/public transport infrastructure increased overall and transport activity; e.g., proximity to a new busway predicted greater active-travel gains (OR = 1.80) and better transit access increased transport walking (OR = 1.44-2.33).

Greater destination accessibility and land-use mix boosted walking. Park upgrades often helped.

Evidence on street connectivity/density was mixed.

Background

Environmental changes that encourage walking and cycling can improve population health, yet effects reported in evaluations are often modest or mixed and difficult to generalise. This review combines evidence of effectiveness with theory-informed explanation, focusing on intervention functions and contextual conditions to clarify how built-environment changes may shift behaviour.

Objectives

To synthesise evaluative studies of environmental interventions targeting walking/cycling, and related sources, to: estimate effects on walking, cycling and PA; identify contexts and mechanisms (accessibility, safety, experience) that trigger change; and develop generalisable, policy-relevant explanations of what works, for whom, and under which conditions.

Design

Review type: Narrative/realist synthesis (registered protocol).

Data: Mined eight databases of reviews. 13 evaluative studies plus 46 related sources.

Population: Adults/general urban populations.

Interventions: Physical changes targeting walking/cycling (paths, lanes, routes).

Outcomes: Use, walking, cycling, total PA.

Analysis: Context-mechanism-outcome extraction, credibility scoring (0-5), and

harvest plots.

Results ::

Six of 13 evaluations reported significant positive effects. Two showed positive effects of uncertain significance. Five were inconclusive or mixed.

Mean credibility score was 3.4. 70% scored ≤3, while 4/13 scored ≥4 and three of these showed positive effects.

Three recurrent functions emerged: enhancing accessibility/connectivity, improving traffic/personal safety, and improving user experience.

Targeting accessibility and safety appeared most effective across contexts.

Smith, M., Hosking, J., Woodward, A., Witten, K., MacMillan, A., Field, A., ... & Mackie, H. (2017). Systematic literature review of built environment effects on physical activity and active transport-an update and new findings on health equity. International Journal of Behavioral Nutrition and Physical Activity, 14(1), 158. https://doi.org/10.1186/s12966-017-0613-9

Background I

Evidence suggests causal links between built **environments** and **PA**—especially active transport. Yet prior reviews rarely examined costs or equity, and often struggled to isolate environmental effects from cointerventions. This review updates the field and foregrounds intervention affordability and differential impacts by SES and ethnicity.

Objectives ()

To identify local-level environmental interventions that increase PA/active transport, and to assess intervention costs and differential effects by ethnicity and SES while isolating built-environment impacts from concurrent "soft" programmes.

Design

Data: Scopus, Ovid (all), ProQuest Science/Social Science, TRID. June 2015. 12,082 records \rightarrow 28 studies.

Population: Children and adults in community settings. **Exposure**: Objective built-environment changes/features.

Outcomes: PA, active transport, setting use.

Analysis: Narrative synthesis. EPHPP quality/risk-of-bias. Equity analyses

(ethnicity/SES).

Results :::

Walkability components, higher-quality parks/playgrounds, and active-transport infrastructure generally increased activity and/or use. Example associations included uptake of cycling with greater residential density (OR = 1.54, 95% CI [1.04, 2.26]) and recreational cycling with higher street connectivity (OR = 1.20, 95% CI [1.06, 1.35]).

Benefits may preferentially accrue to advantaged groups.

Most studies were **US-based** (71%) and **weak quality** (75%).

Cost reporting (7 studies) was sparse and heterogeneous.

Stappers, N. E. H., Van Kann, D. H. H., Ettema, D., De Vries, N. K., & Kremers, S. P. J. (2018). The effect of infrastructural changes in the built environment on physical activity, active transportation and sedentary behavior—a systematic review. Health & Place, 53, 135-149. https://doi.org/10.1016/j.healthplace.2018.08.002

Background I

Environmental and policy shifts shape PA beyond individual factors. Built environment infrastructural changes (BEICs) may promote active transportation (AT) and reduce sedentary behaviour (SB), but causal evidence from experiments is limited. Natural/quasiexperiments can evaluate real-world BEICs yet often face measurement and bias challenges.

Objectives

To systematically review quasi-experimental studies assessing how BEICs affect adults' PA, AT (walking/cycling), and SB, and to examine how **intervention type** and proximity to infrastructure relate to outcomes.

Design

Data: PubMed and Web of Science (to Feb 2018).

Population: Adults (≥18 y)

Design: Natural/quasi-experimental, pre-post studies.

Exposure: BEICs directly targeting transport-related PA/AT.

Outcome: Overall PA, walking, cycling, combined walking/cycling, SB.

Analysis: Narrative synthesis. Study quality via adapted ACROBAT-NRSI risk-of-bias

tool across multiple domains.

Results ::

Nineteen articles (14 unique BEICs).

Trails showed inconsistent effects on overall PA and walking, but predominantly positive effects on cycling.

System-wide BEICs yielded mainly non-significant results. However, living closer to interventions was associated with greater cycling/AT gains.

No studies assessed SB.

Many studies had moderate-critical risk of bias. Objective measures were uncommon (n = 19).

Tcymbal, A., Demetriou, Y., Kelso, A., Wolbring, L., Wunsch, K., Wäsche, H., ... & Reimers, A. K. (2020). Effects of the built environment on physical activity: a systematic review of longitudinal studies taking sex/gender into account. *Environmental Health and Preventive Medicine*, 25(1), 75. https://doi.org/10.1186/s12199-020-00915-z

Background **E**

Built environments influence PA alongside social structures. Prior evidence was mostly cross-sectional, limiting causal inference and rarely considering sex/gender. Longitudinal studies with objective assessments of environmental change can better identify modifiable determinants and equity implications for men and women.

Objectives

To systematically review longitudinal studies assessing how objectively measured changes in the built environment affect PA, explicitly examining whether effects are similar for, or differ between, males and females.

Design

Data: Six databases (PubMed, CINAHL, SportDiscus, PsycInfo, Scopus, Web of Knowledge), searches to 12 March 2020.

Population: General populations.

Design: Quantitative longitudinal designs (cohorts, natural/quasi-experiments).

Exposure: Built environment objectively assessed (e.g., GIS/audits, new

infrastructure).

Outcome: Overall PA, MVPA, walking, cycling, active transport, park use.

Analysis: Narrative synthesis. Study quality via QualSyst.

Results

Thirty-six studies (since 2000).

Overall, built environment changes tended to **benefit PA** similarly in males and females.

Public transport availability showed consistent positive associations with overall PA and walking.

Walking/cycling infrastructure increased active transport but not overall PA.

- Women: effects clearer for public transport, safe cycling lanes, housing density, distance to destinations.
- Men: street connectivity/road environment more salient.

Mean quality score 0.83.

Key biases: confounding, measurement, selection.

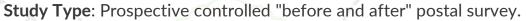
Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the granting authority can be held responsible for them.

URBAN HEALTH

Primary quasiexperimental studies

Cummins, S., Petticrew, M., Higgins, C., Findlay, A., & Sparks, L. (2005). Large scale food retailing as an intervention for diet and health: guasi-experimental evaluation of a natural experiment. Journal of Epidemiology & Community Health, 59(12), 1035-1040. https://doi.org/10.1136/jech.2004.029843

Background I



Researchers have hypothesized that "food deserts" are prevalent in deprived areas, potentially exacerbating diet-related diseases. The relationship between retail provision and diet quality is debated, though interventions like introducing large-scale food retailers have shown potential benefits in consumption patterns and socio-economic conditions, enhancing community health and psychological well-being.

Objectives

Design

Data: 412 residents of two areas in East Glasgow, differentiated into intervention and comparison sites. Random sampling from highly deprived areas (DEPCAT 7) was employed to minimize bias.

Outcome: Changes in diet and psychological health post-intervention.

Statistical Analysis: ANCOVA for diet, logistic regression for health outcomes, controlling for age, sex, economic activity, and education. Interactions and potential confounders were also assessed.

Results :::

Dietary Impact: Intervention had minimal effect on fruit (-0.03, 95% CI [-0.25, 0.30]) and vegetable consumption (-0.11, 95% CI [-0.44, 0.22]). Combined fruit and vegetable intake showed no significant change (-0.10, 95% CI [-0.59, 0.40]).

Health Outcomes: Adjusted odds of fair to poor self-rated health increased in the intervention group (OR = 1.52, 95% CI [0.77, 2.99]). However, poor psychological health slightly improved, but not significantly (OR = 0.57, 95% CI [0.29, 1.11]).

Switchers: Showed a protective effect on psychological health after adjusting for confounders (OR = 0.24, 95% CI [0.09, 0.66]), though changes in self-rated health were not significant (OR = 0.50, 95% CI [0.19, 1.32]).

Background I

The built environment influences PA, but most evidence comes from cross-sectional studies. Natural experiments with quasi-experimental designs are key to establish causality. In 2005, a greenway/trail construction in Knoxville TN allowed to examine the impact of neighborhood connectivity on PA. This study used direct observation to assess changes in PA pre- and postintervention.

Objectives (

This study aimed to examine the **impact** of neighborhood connectivity on PA through a natural experiment in Knoxville, TN. The intervention involved retrofitting a neighborhood with an urban greenway/trail. The main objective was to determine if improvements in the built environment led to increased PA by using direct observation to compare pre- and post-intervention activity levels in both intervention and control neighborhoods.

Design

Data: Direct observation of PA was conducted pre-intervention (March 2005) and post-intervention (March 2007) in intervention and control neighborhoods.

Outcome: Changes in PA levels, observed directly.

Statistical Analysis: Nonparametric tests (Fisher's exact tests and Wilcoxon rank sums test).

Methodology: Quasi-experimental design with two control neighborhoods. Setting: Neighborhood and school levels, using consistent observation times and locations.

Results ::

At baseline, no significant difference in 2-hour PA counts was observed between experimental and control neighborhoods (p=0.370). Post-intervention, total PA counts significantly increased in the experimental neighborhood (p=0.028), including walkers (p=0.002) and cyclists (p=0.036). Median PA counts rose by 8 in the experimental neighborhood and decreased by 1 in control neighborhoods (p=0.001). For active transport to school (ATS), the control schools had higher counts, significantly so in 2007 (p=0.026), but no significant pre-post difference was found (p=0.2061).

Background I

Many communities seek to enhance parks to boost **PA**, but the impact is rarely assessed. Previous reviews show varied cost-effectiveness of interventions, with community-wide efforts generally more efficient. Facility renovations have mixed results, with some increasing usage and others failing due to poor marketing. Installing Fitness Zones (FZs) in public parks provides accessible, durable exercise equipment.

Objectives

This study aims to evaluate the **impact** of installing **FZs** in public parks on PA levels among diverse community groups in Los Angeles. It examines the usage patterns of the new equipment by different demographic groups, the overall increase in park usage and PA, and the costeffectiveness of the equipment based on the incremental change in park-based PA compared to parks without the FZs.

Design

Data: The study utilized the System for Observing Play and Recreation in Communities (SOPARC) to observe park usage before and after.

Intervention: FZ installations in 12 parks, compared with 10 control parks without FZs.

Outcome: Park usage and PA levels.

Statistical Analysis: Mixed effects models compared changes in PA between FZ parks and control parks, using propensity score weighting to account for demographic differences. Cost-effectiveness was calculated by estimating Metabolic Equivalents (METs) gained per dollar spent on FZ installations.

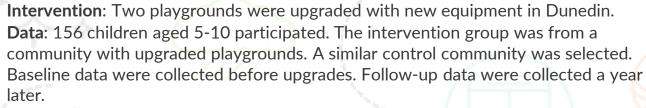
Results

Observations of Park Users: A total of 23,577 people were observed, with park usage increasing by 11% at the first follow-up. FZ users engaged in more moderate to vigorous PA (MVPA) (66% vs. 31% at first follow-up).

Self-Reported Park Use: Interviews showed FZ users visited parks more frequently (3.5 vs. 2.4 visits/week) and exercised more (3.9 vs. 2.7 sessions/week). Possible insufficient statistical power with a sample size of only 20 parks.

Cost Effectiveness: FZ parks gained 1,909 METs annually, costing 10.5 cents per MET. Compared to non-FZ parks, the cost was 2.4 cents per MET, though the increase was not statistically significant.

Background []



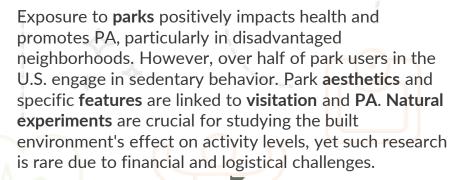
Playgrounds are believed to increase children's PA, but evidence is unclear. Most studies show increased activity after school playground upgrades, though adding supervision is often necessary. These studies, using heart-rate monitors, accelerometers, or pedometers, typically focus on schools, ignoring home and **community** activity.

Objectives ()

The study aims to evaluate changes in children's PA when playgrounds in public parks are upgraded. The hypothesis is that these upgrades will increase the total daily PA (TDPA) of children, measured by accelerometers, compared to a control community. The objectives are to assess the impact of improved playground facilities on children's overall PA and determine whether such interventions can enhance their daily exercise levels.

Design

Outcome: PA was measured using GT1M accelerometers worn for eight days. Statistical Analysis: Data were analyzed using linear mixed models, controlling for repeated measures within each child and clustering by schools.


Results ::

The final model found no significant difference in mean TDPA between the intervention and control communities. However, there was a significant interaction between BMI z-scores and community (p = 0.006). In the intervention community, children with BMI z-scores less than 0.4 showed increased activity, while those with BMI z-scores greater than 0.4 showed decreased activity (Figure 1). This suggests that playground upgrades may benefit children with lower BMIs but potentially decrease activity in those with higher BMIs. Further studies are needed to confirm these findings.

Background I

Objectives

This study aims to examine whether **improvements** to park facilities in a disadvantaged neighborhood in Victoria, Australia, lead to changes in (1) park use, (2) the nature of activities (active or sedentary) undertaken in the park, and (3) whether these changes are sustained over time. The study involves refurbishing an intervention park and comparing it with a control park before and after the refurbishment.

Design

Intervention: The study compared a refurbished intervention park (25,200 m²) with a control park (10,000 m²) in a disadvantaged neighborhood.

Data: Data were collected at baseline, post-improvement, and 12 months later.

Outcome: PA was assessed using SOPARC, recording gender, age group, and activity level every 15 minutes during three 1.5-hour periods daily over 9 days.

Statistical Analysis: Counts of park users, walkers, and vigorous activity were transformed and analyzed using two-way ANOVAs to examine park and time effects.

Results :::

There was a significant interaction between park and time for the total counts of park users (F(2, 154) = 14.99, p < 0.0005), counts of people walking (F(2, 154) = 11.70, p < 0.001), and counts of people being vigorously active (F(2, 154) = 4.98, p = 0.008). Intervention Park: Increased total users, walkers, and vigorous activity at T2 and T3 compared to T1.

Control Park: Fewer users at T3 compared to T2; no changes in walkers or vigorous activity across time points.

Background

Access to green spaces has been linked to improved health and wellbeing. Studies indicate that natural environments encourage PA, social interactions, and reduce stress, with stronger effects in deprived **communities**. However, the **quality** of green spaces significantly impacts these benefits. Glasgow, despite its abundant green spaces, shows disparities in access and quality, particularly in deprived areas.

Objectives

This study aims to explore the **impact** of **urban** woodland improvements on a deprived Glasgow community through the WIAT (Woods In and Around Towns) scheme. The objectives are: 1. Assess if the WIAT intervention improves community perceptions of environmental quality and Quality of Life (QoL). 2. Determine if the WIAT intervention increases local woodland use and outdoor PA. 3. Identify other differences in perceptions or experiences of local woodlands due to the WIAT intervention.

Design

Data: Cross-sectional surveys pre- (2006) and post-intervention (2009). Random sampling within 500 m of green spaces, matching census profiles for age, gender, and socio-economic group. About 100 participants per community.

Intervention: Drumchapel (intervention) and Milton (comparison).

Outcome: Environmental perception, quality of life, woodland use, and PA. Statistical Analysis: Mann-Whitney U tests compared pre- and post-intervention differences within and between sites.

Results ::

QoL and Environment: Satisfaction increased more at the intervention site (+27%) than the comparison site (+19%).

Use of Local Woodlands: Visits increased significantly at the intervention site (+25%); no change at the comparison site.

Outdoor PA: Activity levels increased significantly at the intervention site (+25%); decreased at the comparison site (-17%).

Experience and Perception: Perception on local woodlands as places where they can pursue healthy activities increased at the intervention site (+28%); no change at the comparison site.

Dill, J., McNeil, N., Broach, J., & Ma, L. (2014). Bicycle boulevards and changes in physical activity and active transportation: Findings from a natural experiment. Preventive Medicine, 69, S74-S78. https://doi.org/10.1016/j.ypmed.2014.10.006

Background []

Safe bicycling infrastructure is crucial for increasing cycling rates among adults and children. Most studies have focused on on-street bicycle lanes and separated paths. Bicycle boulevards, low-volume streets designed for cycling, are less studied but preferred by cyclists. Research on new infrastructure's effects on cycling is limited by a lack of longitudinal studies with control groups.

Objectives ()

The study aims to evaluate the **impact** of installing new bicycle boulevards on PA and active transportation. It hypothesizes that active transportation levels will increase in neighborhoods with the new infrastructure. The research focuses on comparing pre- and postinstallation activity levels in treatment and control groups while accounting for socio-demographic factors and attitudes towards bicycling and walking. This longitudinal design aims to address the lack of controlled studies in existing infrastructure research.

Design

Intervention: Installation of bicycle boulevards on 8 street segments in Portland.

Outcome: Changes in PA and active transportation, measured by surveys, accelerometers, and GPS data.

Statistical Analysis: Difference-in-differences regressions (binomial logit, negative binomial, and linear regression, adjusting for demographic, geographic, and attitudinal covariates.

Results ::

The interaction term (treatment * post) was not significant for most models, indicating no significant effect of bicycle boulevards on daily MVPA, walking over 20 minutes, or making a bike trip.

Weather: Rain negatively affected bicycling over 10 minutes, making a bike trip, and minutes of walking.

Proximity to Downtown: Closer distance to downtown correlated with higher MVPA and more active transportation.

Gender: Women engaged in less MVPA and cycling.

Attitudes: Positive attitudes towards bicycling and walking were linked to higher engagement in these activities.

Cranney, L., Phongsavan, P., Kariuki, M., Stride, V., Scott, A., Hua, M., & Bauman, A. (2016). Impact of an outdoor gym on park users' physical activity: A natural experiment. Health & Place, 37, 26-34. https://doi.org/10.1016/j.healthplace.2015.11.002

Background []

Providing well-maintained public open spaces like parks promotes PA, crucial as over half of Australian adults are inactive. Enhancing park quality supports health, especially in urbanized Sydney, where open spaces are dwindling. While park features are linked to increased activity, research on the **impact** of interventions like outdoor gyms, which offer free fitness opportunities, is limited and inconclusive.

Objectives

This study aimed to assess the **impact** of installing and promoting an outdoor gym in a park on the PA levels of park users. It also aimed to examine the characteristics, motivations, enablers, and barriers for outdoor gym users. The research intended to provide evidence on how environmental interventions like outdoor gyms can influence recreational PA, addressing the lack of conclusive data on their effectiveness.

Design

Data: Methods for data collection included SOPARC observations of park users' activity levels and demographics, and intercept interviews. 9 data collection periods. Intervention: An outdoor gym was installed in March 2013 in a park located in Maraoubra, Eastern Sidney. No comparable parks were identified that could be considered as a control park for this study

Outcome: Measured changes in park user numbers, activity levels, and gym area usage before and after the intervention.

Statistical Analysis: Used descriptive statistics and chi-square tests-

Results

Overall Findings: 23,905 park users observed: 36% baseline, 30% post-installation, 34% follow-up. Activity: 63% sedentary, 26% walking, 11% MVPA.

Intercept Interviews: 2266 interviews with a 65% response rate. Higher response from adults (70%) vs. seniors (50%).

Activity Levels: MVPA increased post-installation, then decreased slightly at followup. Notable increases in children and male adults.

Outdoor Gym Use: Usage doubled post-installation but remained higher than baseline at follow-up. MVPA at the gym increased from 6% to 36% post-installation and 40% follow-up.

User Characteristics: Gym users were often local residents and frequent park visitors.

McCormack, G. R., Graham, T. M., Swanson, K., Massolo, A., & Rock, M. J. (2016). Changes in visitor profiles and activity patterns following dog supportive modifications to parks: a natural experiment on the health impact of an urban policy. SSM-Population Health, 2, 237-243. https://doi.org/10.1016/j.ssmph.2016.03.002

Background []

Urban parks benefit mental and emotional health and support PA and social interaction. Evidence on how park modifications influence usage is limited. Some studies show that new equipment and landscaping can increase park use and activity, while others do not. Parks also promote PA through dog-walking, especially near offleash areas.

Objectives ()

This study aimed to assess how creating off-leash areas in urban parks impacts the demographics of park visitors and their activity patterns. It focused on whether these modifications could change visitor characteristics and the types and intensities of park-based activities.

Design P

Data: Observations were conducted in four Calgary parks (Alberta, Canada) from May to July in 2011 and 2012, collecting data on visitor demographics and activities. Intervention: Taradale Park and Martindale Park. West Hillhurst and Meadowlark Parks: No changes; control sites.

Outcome: Measured changes in visitor demographics and activities.

Statistical Analysis: Used Chi-square tests with Bonferroni adjustments, binary logistic regression, and multiple linear regression to compare activity types and intensities, adjusting for visitor characteristics

Results ::

Visitor Characteristics: More visitors in modified parks (Taradale and Martindale) in 2012 compared to 2011. *Martindale*: Increase in adults (41.3% to 56.5%, p < 0.05) and weekend visitors (56% to 69.4%, p < 0.05). **Taradale**: Increase in children and dogrelated visits; decrease in proportion of afternoon visitors (72.5% to 55.5%, p < 0.05). Visitor Activities: walking, cycling, dog-related. Martindale: Decrease in dog-related activities (OR = 0.55, 95% CI [0.33, 0.93]). *Meadowlark*: Increase in walking (58.0% to 68.3%, p<.05); decrease in cycling (25.9% to 15.9%, p < 0.05).

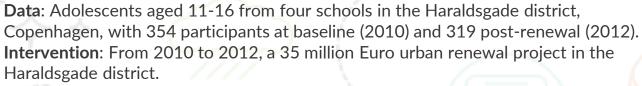
Activity Intensity: No significant change in adult activity intensity in modified parks.

Meadowlark: Decrease in activity intensity ($\beta = -0.44$, 95% CI [-0.88, -0.01]).

Lower intensity for visitors with dogs (e.g., Taradale: $\beta = -2.56$, 95% CI [-2.87, -2.24]).

Andersen, H. B., Christiansen, L. B., Klinker, C. D., Ersbøll, A. K., Troelsen, J., Kerr, J., & Schipperijn, J. (2017). Increases in use and activity due to urban renewal: effect of a natural experiment. American Journal of Preventive Medicine, 53(3), e81-e87. https://doi.org/10.1016/j.amepre.2017.03.010

Background



Many children and adolescents in Western countries do not meet the recommended 60 minutes of MVPA daily. The **built environment** significantly influences PA levels. Public outdoor spaces are crucial for promoting PA, especially in urban areas with limited private outdoor space. The neighborhood environment is particularly important for children's and adolescents' PA due to limited travel opportunities.

Objectives

This study aims to evaluate the **impact** of **urban renewal** in the Haraldsgade district of Copenhagen on adolescents' PA levels. The renewal included renovations and new constructions of green spaces, playgrounds, and sports facilities. Adolescents aged 11-16 from local schools were assessed before (2010) and after (2012) the renewal using accelerometry and GPS to measure PA and location. The objective was to determine if these urban changes led to increased PA among adolescents in this deprived neighborhood.

Design

Outcome: Time spent in the district and levels of PA, measured using accelerometers and location data with GPS trackers.

Statistical Analysis: General linear mixed models adjusted for age, gender, BMI, valid days, daily wear time, and residential status.

Results ::

PA in the District

Total Time in District: Increased by 24.6 minutes/day post-renewal (p = 0.017).

Light (LPA): Increased by 7.8 minutes/day (p = 0.012).

MVPA: Increased by 4.5 minutes/day (p < 0.001).

Sedentary Time (SED): Increased by 13.1 minutes/day (p = 0.043).

Effect Moderation: No significant differences based on gender, age, or district residency in time spent and activity level.

Primary study

Schultz, C. L., Stanis, S. A. W., Sayers, S. P., Thombs, L. A., & Thomas, I. M. (2017). A longitudinal examination of improved access on park use and physical activity in a low-income and majority African American neighborhood park. Preventive Medicine, 95, S95-S100. https://doi.org/10.1016/j.ypmed.2016.08.036

Background I

Sedentary behavior and obesity are highest in lowincome, minority communities. Built environments, including parks and active transportation infrastructure, promote PA. However, these neighborhoods often lack walkability and face safety issues. Few studies have evaluated the influence of pedestrian infrastructure changes on park use and park-based PA.

Objectives

This study aimed to evaluate the **impact** of **new** pedestrian infrastructure on park use and park-based PA in a low-income, predominantly African American community in Columbia, Missouri.

Design

Data: Data were collected over three years (2012-2014) using SOPARC, recording park use and PA by age, gender, and race/ethnicity.

Statistical Analysis: ANCOVA models, controlling for temperature, assessed changes in park use and **Energy**: **Expenditure** (EE).

Results

Total park use: Increased from 2080 (2012) to 2275 (2013), then stable at 2276 (2014). Between 53% and 60% of the observed park-based PA was sedentary Changes in Total Park Counts: Significant year effect on park counts (F = 114.98; p < 0.001). Increase from 2012 to 2013 (p < 0.001), decrease from 2013 to 2014 (p < 0.001). 2014 counts still higher than 2012.

Changes in Total EE: Significant year effect on total EE (F = 11.75; p < 0.001). Decrease from 2012 to 2013, maintained in 2014.

Significant interactions between year and demographics for changes in total EE: Two-Way ANCOVA interaction (Year * Age): F = 14.200; p < 0.001. (Year * Gender): F = 32.059; p < 0.001. (Year * Race/Ethnicity): F = 36.606; p < 0.001.

Pliakas, T., Egan, M., Gibbons, J., Ashton, C., Hart, J., & Lock, K. (2018). Increasing powers to reject licences to sell alcohol: Impacts on availability, sales and behavioural outcomes from a novel natural experiment evaluation. Preventive medicine, 116, 87–93. https://doi.org/10.1016/j.ypmed.2018.09.010

Background

Local alcohol licensing can modify availability and harms, yet granular evidence on **cumulative impact policies** (CIPs) is limited. In 2013, an English borough implemented a borough-wide Statement of Licensing Policy with seven Cumulative Impact Zones (CIZs) and earlier closing guidelines, enabling natural-experiment evaluation of availability, sales and harm outcomes.

Objectives

Quantify immediate and longer-term impacts of the 2013 SLP-CIP on licensing decisions, temporal/spatial/economic availability, and behavioural outcomes (overall crime, anti-social behaviour, alcoholrelated ambulance call-outs), comparing CIZs with non-CIZs using interrupted time-series methods.

Design

Data: Licensing (2008–2016), ambulance (2008–2016), sales (2010–2016), crime/ASB (2011-2016).

Population: Borough premises/events, assigned to CIZs/non-CIZs.

Intervention: 2013 SLP-CIP creating 7 CIZs. Earlier closing guidelines by premise type.

Outcome: Applications, approval rates, trading hours/late closing; crime/ASB; ambulance; on-licence sales/units/value.

Statistical analysis: Interrupted time series (Prais-Winsten; Poisson), step/slope changes. Seasonality/autocorrelation addressed.

Results

Approval rates fell immediately (CIZ: -28.6%, 95% CI [-39.7, -15.4]. Non-CIZ: -24.0%, 95% CI [-41.9, -0.7]).

Trading hours declined longer-term in non-CIZs (-4.8 h/week, 95% CI [-6.6, -2.9]). On-licences: -10.2 h/week (95% CI [-16.0, -4.5]).

Crime dropped immediately (CIZ: -12.22%, 95% CI [-17.95, -6.09]. Non-CIZ: -7.97%, 95% CI [-13.96, -1.56]) but trends later rose.

Ambulance call-outs showed no significant change.

CIZ on-licence units fell over time (slope: -2060, 95% CI [-3033, -1087]).

Veitch, J., Salmon, J., Crawford, D., Abbott, G., Giles-Corti, B., Carver, A., & Timperio, A. (2018). The REVAMP natural experiment study: the impact of a play-scape installation on park visitation and park-based physical activity. International Journal of Behavioral Nutrition and Physical Activity, 15(10), 1-14. https://doi.org/10.1186/s12966-017-0625-5

Background I

Physical inactivity contributes to chronic diseases. Parks provide key opportunities for PA and health benefits. Despite significant investment, little evidence exists on the impact of park refurbishments on visitation and activity. Natural experiments suggest park improvements boost these metrics, but more research is needed, particularly on playground installations in disadvantaged areas, to guide equitable public health strategies.

Objectives

To evaluate the **impact** of installing a **children's play**scape in a large metropolitan park in a low SES area of Melbourne, Australia, this study compares park visitation and park-based PA between the intervention park and a control park. The primary objective is to assess whether the play-scape installation increases park visitation and PA among different age groups. This research aims to inform public health strategies by providing evidence on the benefits of park refurbishments, particularly in socio-economically disadvantaged areas, to promote equitable access to recreational facilities and PA opportunities.

Design

Data: The study involved observations from SOPARC, path usage monitoring, car traffic counts, intercept surveys, and resident surveys.

Intervention: A \$1.1 million play-scape was installed in a large metropolitan park in a low SES area of Melbourne. The control park, located in a High SES area, had an older adventure playground.

Outcome: Park visitation and park-based PA levels among different age groups. Statistical Analysis: Negative binomial regression models for analysing visitor and traffic counts. Logistic regression models for regular visitation and PA levels.

Results ::

Visitor counts increased by 176% at the intervention park from T1 to T2 compared to the control park (IRR = 2.76, 95% CI [1.04, 7.33]). Visitors engaging in MVPA increased by 119% from T1 to T2 (IRR = 2.19, 95% CI [1.14, 4.20]) and by 128% from T1 to T3 (IRR = 2.28, 95% CI [1.19, 4.38]). Visitation at the intervention park's playscape increased significantly from T1 to T2 (IRR = 18.12, 95% CI [5.51, 59.59]) and from T1 to T3 (IRR = 15.05, 95% CI [4.61, 49.16]). The odds of children's regular visitation to the intervention park increased at T2 (OR = 2.67, 95% CI [1.08, 6.64]). Other measures showed no significant differences between the parks.

Primary study

Auchincloss, A. H., Michael, Y. L., Kuder, J. F., Shi, J., Khan, S., & Ballester, L. S. (2019). Changes in physical activity after building a greenway in a disadvantaged urban community: A natural experiment. Preventive Medicine Reports, 15, 100941. https://doi.org/10.1016/j.pmedr.2019.100941

Background []

In June 2013, a 1.5-mile greenway was built in a disadvantaged, predominantly African-American neighborhood in Philadelphia. The greenway included sidewalks, pedestrian signals, ADA ramps, and street trees. This study tests if the new greenway increases MVPA, as greenways can promote activity by serving as transit corridors and leisure destinations. Evidence in low-income areas is limited.

Objectives

This study aims to **test** whether the **new greenway** increases MVPA levels in a low-income urban area. A quasi-experimental pre-post design is be used to observe changes in PA. Additionally, an environmental audit documents changes in the greenway and comparison sites.

Design

Data: Systematic observations using SOPARC. Post-construction intercept surveys were collected at the greenway (N = 175)

Intervention: A 1.5-mile greenway in a deprived neighborhood in Philadelphia. A 1mile section of arterial streets in a demographically similar area served as a control.

Outcome: Changes in MVPA.

Statistical Analysis: Difference-in-difference analysis to compare changes in PA between the greenway and control sites. Hierarchical logistic models for estimating ORs of engaging in MVPA pre- and post-construction.

Results ::

PA Observations: Pre-construction, 100 people per hour were observed using the greenway, with less than 20% engaging in MVPA. Post-construction, the number slightly increased to 116 per hour, with a small rise in MVPA. Cycling increased by 4%. and running or fast walking increased by 2%. However, these changes were similar to those in the comparison area. The adjusted analysis showed a 45% increase in MVPA odds at the greenway (OR = 1.45, 95% CI [1.06, 1.98]), but no significant difference between the greenway and comparison sites.

Greenway User Characteristics: Most users were local residents, with over 60% using the greenway daily, primarily for transportation rather than leisure. Users largely agreed that the greenway was an improvement and felt safe during the day (92%), though 58% felt unsafe at night. Many still noted pavement cracks post-construction.

Cohen, D. A., Han, B., Isacoff, J., Shulaker, B., & Williamson, S. (2019). Renovations of neighbourhood parks: long-term outcomes on physical activity. Journal of Epidemiology & Community Health, 73(3), 214-218. https://doi.org/10.1136/jech-2018-210791

Background

Urban parks enhance neighborhoods and encourage **PA**. **Renovations**, guided by community input, can boost park use and activity. Despite their potential, few studies evaluate renovations' long-term effects on MVPA. Existing research often shows mixed results due to varying methodologies and typically includes only shortterm assessments.

Objectives

This study addresses this gap by examining park use and MVPA at three time points over six years, during which five of the six parks were renovated by the San Francisco Recreation and Parks Department (SFRPD). The goal is to assess both immediate and longer-term impacts of these renovations on park use and PA.

Design P

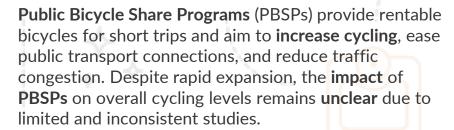
Intervention: Five parks were renovated by the SFRPD, with community input influencing design features. One park served as a control with no renovations.

Outcome: Changes in park use and MVPA.

Statistical Analysis: Difference-in-differences approach with mixed-effect models to estimate short-term and long-term park renovation effects.

Results ::

Park Use and PA: Renovated parks saw a net increase in users, while the unrenovated park had a decrease. Playground use tripled, and seating area use more than tripled. MET-hours per observation increased by at least 70% in all renovated parks. The unrenovated park saw a 45% decrease.


Overall Impact: Renovated parks had a 480% increase in users and a 636% increase in MET-hours from 2009 to 2015 (p < 0.001). Short-term effects showed a 580% increase in users and 800% increase in MET-hours (p < 0.001), while long-term effects were negative (-53% users and -60% MET-hours, p < 0.05).

Age Group Differences: The effect sizes differed among age groups. The effects for children and adults were similar to the overall effects, but not for seniors and teenagers.

Hosford, K., Winters, M., Gauvin, L., Camden, A., Dubé, A. S., Friedman, S. M., & Fuller, D. (2019). Evaluating the impact of implementing public bicycle share programs on cycling: the International Bikeshare Impacts on Cycling and Collisions Study (IBICCS). International Journal of Behavioral Nutrition and Physical Activity, 16(107), 1-11. https://doi.org/10.1186/s12966-019-0871-9

Background I

This study aims to evaluate the **impact** of **PBSPs** on population-level cycling in eight North American cities from 2012 to 2014: newly implemented (Chicago, New York), existing (Boston, Montreal, Toronto), or no PBSP (Detroit, Philadelphia, Vancouver). It hypothesizes that cities with newly implemented PBSPs will show the greatest increase in cycling, followed by cities with existing programs. The study also examines potential gender differences in cycling behavior changes associated with PBSP implementation.

Design

Data: 23,023 residents (aged 18+) across 8 North American cities.

Intervention: Implementation and presence of PBSPs. Cities with PBSPs had docking stations within 500m of participants' homes. For control cities, hypothetical service areas were assigned based on future docking station locations.

Outcome: Binary measure of self-reported cycling for any purpose (transportation or leisure) for at least 10 minutes in the past week.

Statistical Analysis: Triple difference-in-differences logistic regression. Sensitivity analysis and gender-stratified models were also used.

Results ::

Cycling Rates: Past-week cycling increased from 18.1% in 2012 to 24.8% in 2013 and 24.5% in 2014. Men reported higher cycling rates than women, but both groups showed increases over time. PBSP usage rose from 9.0% in 2012 to 14.3% in 2014. Impact of PBSP on Cycling: Logistic regression models showed higher odds of pastweek cycling for those living near docking stations in cities with newly implemented PBSPs, with OR = 2.14 (95% CI [1.11, 4.12]) at the first follow-up and OR = 2.08 (95% CI [1.14, 3.77]) at the second follow-up, compared to cities with no PBSP. The effect remained significant after adjusting for covariates at the second follow-up (OR = 1.84, 95% CI [1.003, 3.39]). There was no significant change for cities with existing PBSPs. Gender: Women in newly implemented PBSP cities showed higher cycling odds at the first follow-up (OR = 2.61, 95% CI [1.08, 6.32]), but this was not sustained.

McGavock, J., Brunton, N., Klaprat, N., Swanson, A., Pancoe, D., Manley, E., ... & Hobin, E. (2019). Walking on water—a natural experiment of a population health intervention to promote physical activity after the winter holidays. International Journal of Environmental Research and Public Health, 16(19), 3627. https://doi.org/10.3390/ijerph16193627

Background I

In westernized countries, including Canada, the winter holiday season often leads to weight gain and reduced PA, particularly in sub-zero regions. Behavioural interventions during this period can prevent typical weight gains but may not reach all affected populations. The start of the year presents a critical time for adopting healthy habits. Urban frozen waterway trails, supporting winter recreational activities, offer a potential solution.

Objectives (R)

This study aimed to assess the **impact** of a **frozen** waterway trail on user visits and PA patterns. The main hypothesis was that daily visits to an urban trail network would significantly **increase** with the creation of a **frozen** waterway trail compared to days without it. Additionally, the study aimed to describe trail user demographics, PA levels, and perceived benefits.

Design

Data: Daily user counts and field survey data during the 2017/2018 and 2018/2019 winter seasons. Participants were trail visitors, with a convenience sample of adults over 18 for surveys and pedometer data.

Intervention: Seasonal trail on frozen waterway for ~10 weeks post-Christmas in Winnipeg, Canada, featuring art displays and warming huts.

Outcome: Daily trail user counts using a PYRO-Box people counter. Secondary outcomes included PA levels and perceived health impacts.

Statistical Analysis: Multivariate regression and ARIMA models for user counts.

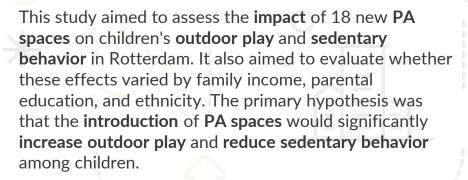
Results ::

Impact of Intervention on Visitors: Daily trail visits increased 2- to 4-fold during the intervention in both 2017/2018 and 2018/2019 (p < 0.001), with counts returning to pre-intervention levels post-intervention.

PA Levels: Users averaged 4195 steps and 39 minutes of activity per visit. 37% achieved 30 minutes of MVPA. Weekday users had more steps and MVPA than weekend users.

User Profiles and Perceived Health Outcomes: Of 466 users, 58% were female, 60% had incomes >\$50,000, and 58% were over 35. Most traveled ≤15 minutes to the trail and used it for recreation. Over 90% used the trail for >30 minutes per visit. 53% reported improved health and 58% noted better mental/emotional health.

Mölenberg, F. J., Noordzij, J. M., Burdorf, A., & van Lenthe, F. J. (2019). New physical activity spaces in deprived neighborhoods: Does it change outdoor play and sedentary behavior? A natural experiment. Health & Place, 58, 102151. https://doi.org/10.1016/j.healthplace.2019.102151



Background []

Promoting PA in children is crucial for combating childhood obesity. Access to PA spaces in neighborhoods is important, but there is limited evidence on whether these spaces increase PA or if active families choose to live near them. While RCTs are ideal for establishing causality, they are impractical for assigning play facilities. Natural experiments offer an alternative by using variations in access to PA spaces to determine intervention effects.

Objectives

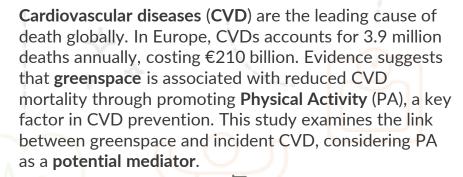
Design

Data: Prospective birth cohort including 1841 children who were assessed at ages 6 and 10, with relevant data collected via parent-reported questionnaires.

Intervention: 18 new PA spaces introduced in Rotterdam from 2008 to 2015 in deprived neighborhoods to encourage PA among children.

Outcome: Outdoor play and sedentary behavior, measured via parent-reports. Secondary outcomes included sport participation and active transport to school. Statistical Analysis: Fixed-effects regression models controlled for time-variant and time-invariant confounders. Sensitivity analyses tested different forms of exposure.

Results ::


Intervention Group included 171 children. They were more often non-Western, less often participated in sports, and came from families with lower SES.

Outdoor Play and Sedentary Behavior: Cross-Sectional Analysis: Intervention group children played 40 min/week more outside (95% CI: -6, 87). With lower maternal education, outdoor play increased by 96 min/week (95% CI: 18, 174). Sedentary behavior differences were non-significant. Buffer Analysis: No effect on outdoor play (-25 min/week, 95% CI: -101, 51) or sedentary behavior (55 min/week, 95% CI: -57, 167). Distance Analysis: Reducing distance by 100 m had no effect on outdoor play (-3 min/week, 95% CI: -31, 25) or sedentary behavior (42 min/week, 95% CI: -16, 99). Sensitivity Analyses: Consistent results across different buffer sizes, inclusion of movers, and varying exposure times.

Dalton, A.M., & Jones, A.P. (2020). Residential neighbourhood greenspace is associated with reduced risk of cardiovascular disease: a prospective cohort study. PLoS One, 15(1), e0226524. https://doi.org/10.1371/journal.pone.0226524

Background

Objectives

The study aims to assess the link between neighborhood greenspace and incident CVD using longitudinal data. It evaluates if **PA** is a **mediating factor** in this relationship, using hospital data for CVD verification and detailed greenspace measurements. The research advances prior work by focusing on incident CVD as a critical public health issue influenced by modifiable behaviors.

Design

Data: Longitudinal health and lifestyle data from the EPIC Norfolk, UK cohort.

Outcome: Incident CVD identified through hospital admission records.

Neighborhood greenspace: Percentage of greenspace around homes, measured using classified satellite imagery.

PA measurement: Activity levels assessed from questionnaire. Covariates: Age, sex, Body Mass Index (BMI), diabetes, socio-economic status (SES).

Statistical analysis: Cox regression models to determine the impact of greenspace on CVD incidence.

Results ::

Participant profile: Mean age was 59.2 years, 54.7% female, with a mean follow-up of 14.5 years.

Greenspace vs. CVD:

- Residents in the greenest quartile saw a 7% reduced hazard for CVD (HR = 0.93, 95% CI [0.88, 0.97], p = 0.003) after adjustment.
- Predicted CVD incidence could drop by 4.8% in the least green areas if greenspace increased to average levels (HR = 0.95, 95% CI [0.91, 0.99], p = 0.003).

PA's role: PA did not act as a mediator (HR = 0.99, 95% CI [0.97, 1.01], p = 0.416).

Occupation: The greenspace-CVD association was non-significant in manual workers.

Pearson, A. L., Pfeiffer, K. A., Gardiner, J., Horton, T., Buxton, R. T., Hunter, R. F., ... & McDade, T. (2020). Study of active neighborhoods in Detroit (StAND): study protocol for a natural experiment evaluating the health benefits of ecological restoration of parks. BMC Public Health, 20(638), 1-14. https://doi.org/10.1186/s12889-020-08716-3

Background

Individuals in deprived inner cities face high rates of obesity, diabetes, cancer, and cardio-metabolic conditions due to stress and physical inactivity. These conditions incur significant medical costs. Low-income neighborhoods exhibit low PA and high stress, leading to chronic disease. Greenspaces, like parks, promote PA and reduce stress, with 'green PA' proving more effective than indoor or non-green outdoor PA.

Objectives

The StAND study aims to observe the effects of park ecological restoration on PA, stress, and cardiometabolic health over three years. The hypotheses are: 1. Increased PA in intervention (INT) park neighborhoods. 2. Increased 'green PA' in INT park neighborhoods. 3. Visual and auditory exposures affect PA levels. 4. Lower stress levels in INT park neighborhoods. 5. Higher PA and 'green PA' correlate with lower stress. 6. Visual and auditory exposures affect stress levels. 7. Improved A1C and CRP in INT park neighborhoods. 8. Lower blood pressure, BMI, and hipto-waist ratios in INT park neighborhoods.

Design

The Study of Active Neighborhoods in Detroit is a quasi-experimental, longitudinal panel natural experiment with two conditions (restored park intervention (INT) and control (CNT)) and annual measurements at baseline and 3-years post-restoration. **Intervention**: Restoration (n = 4 parks) involves replacing non-native plants and turf with native plants; creating trails; posting signage; and leading community stewardship events. The CNT condition (n = 5) is an unmaintained park, matched to INT based on specified neighborhood conditions.

Results ::

Authors reported problems in implementing the study protocol. See:

Pearson, A. L., Pfeiffer, K. A., Buxton, R. T., Horton, T. H., Gardiner, J., & Asana, V. (2023). Four recommendations to tackle the complex reality of transdisciplinary, natural experiment research. Frontiers in Public Health, 11, 1240231. https://doi.org/10.3389/fpubh.2023.1240231

Primary study

Hunter, R. F., Adlakha, D., Cardwell, C., Cupples, M. E., Donnelly, M., Ellis, G., ... & Tully, M. A. (2021). Investigating the physical activity, health, wellbeing, social and environmental effects of a new urban greenway: a natural experiment (the PARC study). International Journal of Behavioral Nutrition and Physical Activity, 18(142), 1-19. https://doi.org/10.1186/s12966-021-01213-9

Background []

By 2050, 84% of Europe's population is expected to live in cities. Urban ecosystems need to support higher quality of life and sustainability. Urban green spaces (UGSs) are vital for physical and mental health, economic, and environmental wellbeing. However, UGSs face threats from urban development. While evidence shows UGSs benefits, such as improved health and social inclusion, they are **not equitably distributed**.

Objectives

The aim of this study is to investigate the public health impact of the Connswater Community Greenway (CCG), an urban greenway intervention, on PA, health, wellbeing, social capital, and perceptions of the environment. The study focuses on understanding the influence of this systems-level intervention, with outcomes stratified by exposure to the CCG and levels of deprivation.

Design

Data: Adult residents (≥16 years) within a 1-mile radius of the greenway (intervention) and beyond 1-mile (control). Repeated cross-sectional survey was conducted preintervention (2010/2011) and 6 months post-intervention (2016/2017).

Intervention: £40 million urban regeneration including a 9 km greenway in Belfast.

Outcome: Primary Outcome: PA. Secondary Outcomes: Quality of life, mental wellbeing, social capital, and perceptions of the built environment.

Statistical Analysis: Linear regression and Multi-level models with random intercepts. Ordered logit for assessing changes in the social patterning of outcomes over time.

Results ::

PA: Pre-intervention: 68% met guidelines. Post-intervention: 65% within ≤400 m (adjusted OR = 0.60, 95% CI [0.35, 1.00]), 60% within \geq 1200 m (adjusted OR = 0.64, 95% CI [0.41, 0.99]). **Deprivation**: Similar reduction in PA across all quintiles.

Quality of Life: Intervention Area: Declined less than control (adjusted difference in mean EQ5D: -11.0, 95% CI [-14.5, -7.4] vs. -30.5, 95% CI [-37.9, -23.2]).

Mental Wellbeing: No significant change observed.

Social Capital: Improvements in some indicators.

Environmental Perceptions: Increased attractiveness, traffic, and safety perceptions.

Auchincloss, A. H., Niamatullah, S., Adams, M., Melly, S. J., Li, J., & Lazo, M. (2022). Alcohol outlets and alcohol consumption in changing environments: prevalence and changes over time. *Substance Abuse Treatment, Prevention, and Policy*, 17(1), 7. https://doi.org/10.1186/s13011-021-00430-6

Background **E**

Evidence links alcohol outlet availability to consumption, but longitudinal individual-level studies are scarce. Pennsylvania's 2016 regulatory liberalisation created a natural setting to examine whether short-term increases in off-premise outlets relate to changes in adults' drinking.

Assess cross-sectional and 1-year longitudinal associations between off-premise outlet density/proximity and alcohol use (days/week, drinks/week, high consumption, binge drinking), and test whether associations differ in Pennsylvania versus neighbouring states without major regulatory change.

Design

Data: Population-based cohort (2016–2018, N=772 baseline, N=714 longitudinal).

Population: Adults ≥21 years in PA, NJ, DE.

Exposure/Intervention: Change in off-premise outlet density (1.6 km buffer) and proximity amid PA liberalisation (Act 39). NJ/DE as comparators.

Outcome: Drinking days/week, drinks/week, ≥8 drinks/week, binge ≥1/30 days. Statistical analysis: Adjusted Poisson, logistic, and multinomial logit models.

Results :::

Cross-sectional: highest outlet density vs lowest—drinking days (ratio = 1.28, 95% CI [1.08, 1.52], p = 0.005), drinks/week (ratio = 1.34, 95% CI [1.21, 1.49], p < 0.001), high consumption (OR = 1.97, 95% CI [1.08, 3.62], p = 0.028).

Longitudinal: increased outlet density \rightarrow higher odds of increasing drinking days (OR = 1.64, 95% CI [1.00, 2.68], p = 0.049), drinks/week (OR = 1.55, 95% CI [0.95, 2.55], p = 0.081).

No binge associations.

No PA-state interaction.

Background I

Meeting national PA guidelines is crucial for preventing chronic diseases and enhancing QoL. Built environment strategies, such as park availability and amenities, are known to promote PA. Research indicates that combining these with formal programming activities has a greater impact on PA. Natural experiments, which evaluate interventions before and after implementation, and community engagement in park improvements can further boost PA levels.

Objectives (R

The objective of this study was to evaluate whether built environment changes in two suburban parks outside Denver, Colorado, involving community engagement and PA programming, increased park use and PA levels. This natural experiment tracked community participation in the redesign process, diversity of partners on the steering committee, and measured park use and PA before and after improvements using the SOPARC instrument.

Design

Intervention: Park A added a trail, fitness equipment, natural pavilion, benches, and picnic shelter. Park B added a trail, dog park, fitness equipment, picnic shelter, benches, trees, and lighting. Community engagement included planning meetings.

Outcome: Changes in average park users and activity levels, using SOPARC to measure park use and PA levels before and after improvements.

Statistical Analysis: T-tests and Chi-square tests compared baseline and follow-up.

Results

Twenty-one community meetings, with 10-100 attendees each, and annual park festivals increased community engagement. The steering committee had 47 partners, including residents, community organizations, local businesses, government agencies, faith-based organizations, and educational institutions.

Park A: Visitors increased by 53% (p < .05), mainly in the evenings. Very active visitors increased from 20% to 24%; sedentary visitors decreased from 45% to 41% (not significant).

Park B: Visitors increased by 50% (p = .10), with significant evening increases (p < .0001). Very active visitors decreased from 21% to 15%; sedentary visitors increased from 40% to 43% (not significant); walking visitors increased from 39% to 42% (not significant).

McGavock, J., Hobin, E., Prior, H. J., Swanson, A., Smith, B. T., Booth, G. L., ... & Burchill, C. (2022). Multi-use physical activity trails in an urban setting and cardiovascular disease: a difference-in-differences analysis of a natural experiment in Winnipeg, Manitoba, Canada. International Journal of Behavioral Nutrition and Physical Activity, 19(1), 34. https://doi.org/10.1186/s12966-022-01279-z

Background I

The research builds on the premise that multi-use trails offer a viable solution for encouraging active lifestyles within urban populations.

Authors highlight the inherent challenges of Randomised Clinical Trials (RCTs) and the previous shortcomings of natural experimentation methods in assessing the impact of the built environment on health outcomes.

Objectives

To determine if the expansion of multi-use PA trails in an urban centre (Winnipeg, Canada) is associated with reduced rates of incident CVD events - CVD-related mortality, ischemic heart disease, cerebrovascular events and congestive heart failure - and CVD risk factors hypertension, diabetes and dyslipidemia -

Design

Data: Administrative health, census and built environment data.

Intervention: Building of four multi-use trails, 2010-2012.

Population: Winnipeg residents aged 30 years and older.

Outcome: Major CVD events and risk factors.

Statistical analysis: Difference-in-differences regression with propensity score

matching.

Citizen participation in all phases of the study.

Protocol study at clinicaltrials.gov

Results ::

Trail use: Most users (over 85%) travelled less than 15 minutes to access the trail. Comparison between intervention and control (400 m buffer):

- **CVD events**: In intervention areas the incidence rate was a non-significant 6% higher compared to control areas (IRR = 1.06, 95% CI [0.90, 1.24], p = 0.51).
- CVD risk factors: In intervention areas the incidence rate was a non-significant 8% lower compared to control areas (IRR = 0.92, 95% CI [0.84, 1.02], p = 0.10).

Sensitivity: In areas near the longest and most used trail (400 m buffer), the incidence rate of CVD risk factors was 15% lower compared to control areas (IRR = 0.85, 95%) CI [0.75, 0.96]).

Charreire, H., Conti, B., Bauchard, L., Cissé, N. A., Perignon, M., Rollet, P., ... & Urbasanté Study Group. (2023). A natural experiment to assess how urban interventions in lower socioeconomic areas influence health behaviors: the UrbASanté study. BMC Public Health, 23(1), 498. https://doi.org/10.1186/s12889-023-15388-2

Background I

Overall health and QoL are influenced by individual and environmental factors, including urban planning choices. **Urban interventions**, like low-emission zones, have been implemented to improve conditions but lack extensive real-life health assessments. The natural experiment approach can help evaluate such interventions. Studies show mixed results on health impacts due to methodological challenges.

Objectives

The UrbASanté study aims to assess how urban interventions impact environmental exposures, healthrisk behaviors, and self-reported health using a natural experiment protocol in **Paris**. Specific objectives are to: (i) develop methods to assess and monitor these factors, (ii) collect relevant local data during experimentation, and (iii) analyse the data to understand the effects of urban transformations on health and inform public health and urban planning policies.

Design

The study employs a **natural experiment** with a before/after protocol to evaluate changes in environmental exposures, health-risk behaviours, and self-reported health among residents in Paris. Data will be collected from intervention and control neighbourhoods at baseline (T0, 2022) and follow-up (T1, 2025). The intervention area, Porte de la Chapelle, will undergo urban changes, while control areas will not. Participants must be adults residing in the neighbourhoods and able to complete the survey. Recruitment will utilize various community outreach methods. Analyses will include multivariate regressions and spatial models to assess changes over time.

Results

Results are not yet available as the cited paper is a recent study protocol.

Lovasi, G. S., Boise, S., Jogi, S., Hurvitz, P. M., Rundle, A. G., Diez, J., ... & Siscovick, D. S. (2023). Time-Varying Food Retail and Incident Disease in the Cardiovascular Health Study. American Journal of Preventive Medicine, 64(6), 877-887. https://doi.org/10.1016/j.amepre.2023.02.001

Background

This study investigates how the availability of different **food retail** types like supermarkets and produce markets affects CVD and diabetes incidence among older adults. Natural experiments and prospective studies suggest variable health impacts related to food store availability, highlighting the **complexity** of linking **food retail changes** to health outcomes.

Objectives ()

This study aims to evaluate the **impact** of the **presence** of **food retail types** (supermarkets/produce markets vs. convenience/fast food outlets) on the incidence of CVD and diabetes among older adults. Using longitudinal data from the Cardiovascular Health Study (CHS), it assesses how changes in nearby food retail environments influence health outcomes in an older population, considering the effects of newly available or consistently present food retail options.

Design

Data: Adults aged 65+ from the CHS, with 2,939 and 2,497 included for CVD and diabetes analyses, respectively.

Outcome: Incident CVD and diabetes, tracked via adjudicated events and elevated serum glucose or medication use.

Statistical Analysis: Cox proportional hazards regression assessing time-to-event based on food retail type presence (supermarkets/produce markets vs. convenience/fast food), adjusted for demographics and health. Adjustments for individual and area-based confounders

Results :::

CVD incidence:

- Baseline supermarket/produce market presence within a 1-km radial buffer was associated with excess incident CVD before adjustment (HR = 1.12, 95% CI [1.01] 1.24]). The association was attenuated and no longer statistically significant after adjustment (HR=1.02, 95% CI [0.90, 1.15]).
- Time-varying presence of convenience/fast food retail within 1-km buffers was not significantly associated with incident CVD.

Diabetes incidence:

Neither supermarket/produce market nor convenience/fast food retail was associated with incident diabetes.

Valmayor, S., González, K., López, M. J., Lacera, P., Giménez, P., Rumín-Caparrós, A., ... & Díez, E. (2024). Evaluation of a smoke-free beaches intervention in Barcelona: a quasi-experimental study. Tobacco Control, 33(6), 820-824. https://doi.org/10.1136/tc-2022-057873

Background I

Outdoor smoke-free policies reduce second-hand smoke, yet beach-specific evidence in Europe is limited. Barcelona piloted smoke-free beaches using a mayoral decree, communication campaign and on-site information, enabling a quasi-experimental assessment of behavioural impact and acceptability during the 2021 bathing season.

Objectives

Assess whether Barcelona's smoke-free beaches reduced (i) self-reported witnessing of smoking and (ii) directly observed smoking, and evaluate user satisfaction, by comparing four intervention beaches with five comparison beaches before (15-28 May 2021) and after (29 May-12 September 2021) implementation.

Design

Data: Face-to-face surveys (n=3751) and systematic observations (n=1108).

Population: Beach users ≥16 years.

Design: Quasi-experimental pre-post with comparison group across nine beaches.

Intervention: Mayoral decree (from 29 May 2021) banning tobacco on four beaches, plus media/social-media campaign, beach signage, loudspeaker reminders and trained informant teams.

Outcome: Witnessing smoking in last fortnight; users observed smoking.

Statistical Analysis: χ^2 tests and robust Poisson regressions estimating adjusted PRs.

Results :::

Witnessing smoking fell more on intervention beaches (pre 87.2%→post 49.7%) than comparison (86.2% \rightarrow 74.1%); (PR = 0.7, 95% CI [0.6, 0.8]).

Observed smoking decreased on intervention $(3.8\% \rightarrow 3.0\%)$ but rose on comparison $(2.3\% \rightarrow 9.9\%)$; (PR = 0.3, 95% CI [0.3, 0.4]).

Satisfaction: 8.3/10 (intervention) vs 8.1/10 (comparison).

- 1. Zhang, Y., Koene, M., Reijneveld, S. A., Tuinstra, J., Broekhuis, M., van der Spek, S., & Wagenaar, C. (2022). The impact of interventions in the built environment on physical activity levels: a systematic umbrella review. *The International Journal of Behavioral Nutrition and Physical Activity*, 19(1), 156. https://doi.org/10.1186/s12966-022-01399-6
- 2. Audrey, S., & Batista-Ferrer, H. (2015). Healthy urban environments for children and young people: A systematic review of intervention studies. *Health & Place*, *36*, 97-117. https://doi.org/10.1016/j.healthplace.2015.09.004
- 3. Hunter, R. F., Cleland, C., Cleary, A., Droomers, M., Wheeler, B. W., Sinnett, D., ... & Braubach, M. (2019). Environmental, health, wellbeing, social and equity effects of urban green space interventions: A meta-narrative evidence synthesis. *Environment International*, 130, 104923. https://doi.org/10.1016/j.envint.2019.104923
- 4. Kärmeniemi, M., Lankila, T., Ikäheimo, T., Koivumaa-Honkanen, H., & Korpelainen, R. (2018). The built environment as a determinant of physical activity: a systematic review of longitudinal studies and natural experiments. *Annals of Behavioral Medicine*, 52(3), 239-251. https://doi.org/10.1093/abm/kax043
- 5. Panter, J., Guell, C., Humphreys, D., & Ogilvie, D. (2019). Can changing the physical environment promote walking and cycling? A systematic review of what works and how. *Health & Place*, 58, 102161. https://doi.org/10.1016/j.healthplace.2019.102161
- 6. Smith, M., Hosking, J., Woodward, A., Witten, K., MacMillan, A., Field, A., ... & Mackie, H. (2017). Systematic literature review of built environment effects on physical activity and active transport—an update and new findings on health equity. *International Journal of Behavioral Nutrition and Physical Activity*, 14(1), 158. https://doi.org/10.1186/s12966-017-0613-9
- 7. Stappers, N. E. H., Van Kann, D. H. H., Ettema, D., De Vries, N. K., & Kremers, S. P. J. (2018). The effect of infrastructural changes in the built environment on physical activity, active transportation and sedentary behavior–a systematic review. *Health & Place*, *53*, 135-149. https://doi.org/10.1016/j.healthplace.2018.08.002
- 8. Tcymbal, A., Demetriou, Y., Kelso, A., Wolbring, L., Wunsch, K., Wäsche, H., ... & Reimers, A. K. (2020). Effects of the built environment on physical activity: a systematic review of longitudinal studies taking sex/gender into account. *Environmental Health and Preventive Medicine*, 25(1), 75. https://doi.org/10.1186/s12199-020-00915-z

- 1. Cummins, S., Petticrew, M., Higgins, C., Findlay, A., & Sparks, L. (2005). Large scale food retailing as an intervention for diet and health: quasi-experimental evaluation of a natural experiment. *Journal of Epidemiology & Community Health*, 59(12), 1035-1040. https://doi.org/10.1136/jech.2004.029843
- 2. Fitzhugh, E. C., Bassett Jr, D. R., & Evans, M. F. (2010). Urban trails and physical activity: a natural experiment. *American Journal of Preventive Medicine*, 39(3), 259-262. https://doi.org/10.1016/j.amepre.2010.05.010
- 3. Cohen, D. A., Marsh, T., Williamson, S., Golinelli, D., & McKenzie, T. L. (2012). Impact and cost-effectiveness of family fitness zones: a natural experiment in urban public parks. *Health & Place*, 18(1), 39-45. https://doi.org/10.1016/j.healthplace.2011.09.008
- 4. Quigg, R., Reeder, A. I., Gray, A., Holt, A., & Waters, D. (2012). The effectiveness of a community playground intervention. *Journal of Urban Health*, 89(1), 171-184. https://doi.org/10.1007/s11524-011-9622-1
- 5. Veitch, J., Ball, K., Crawford, D., Abbott, G. R., & Salmon, J. (2012). Park improvements and park activity: a natural experiment. *American Journal of Preventive Medicine*, 42(6), 616-619. https://doi.org/10.1016/j.amepre.2012.02.015
- 6. Thompson, C. W., Roe, J., & Aspinall, P. (2013). Woodland improvements in deprived urban communities: what impact do they have on people's activities and quality of life? *Landscape and Urban Planning*, 118, 79-89. https://doi.org/10.1016/j.landurbplan.2013.02.001
- 7. Dill, J., McNeil, N., Broach, J., & Ma, L. (2014). Bicycle boulevards and changes in physical activity and active transportation: Findings from a natural experiment. *Preventive Medicine*, 69, S74-S78. https://doi.org/10.1016/j.ypmed.2014.10.006
- 8. Cranney, L., Phongsavan, P., Kariuki, M., Stride, V., Scott, A., Hua, M., & Bauman, A. (2016). Impact of an outdoor gym on park users' physical activity: A natural experiment. *Health & Place*, 37, 26-34. https://doi.org/10.1016/j.healthplace.2015.11.002
- 9. McCormack, G. R., Graham, T. M., Swanson, K., Massolo, A., & Rock, M. J. (2016). Changes in visitor profiles and activity patterns following dog supportive modifications to parks: a natural experiment on the health impact of an urban policy. SSM-Population Health, 2, 237-243. https://doi.org/10.1016/j.ssmph.2016.03.002
- 10. Andersen, H. B., Christiansen, L. B., Klinker, C. D., Ersbøll, A. K., Troelsen, J., Kerr, J., & Schipperijn, J. (2017). Increases in use and activity due to urban renewal: effect of a natural experiment. *American Journal of Preventive Medicine*, 53(3), e81-e87. https://doi.org/10.1016/j.amepre.2017.03.010

- 13. Schultz, C. L., Stanis, S. A. W., Sayers, S. P., Thombs, L. A., & Thomas, I. M. (2017). A longitudinal examination of improved access on park use and physical activity in a low-income and majority African American neighborhood park. *Preventive Medicine*, 95, S95-S100. https://doi.org/10.1016/j.ypmed.2016.08.036
- 14. Pliakas, T., Egan, M., Gibbons, J., Ashton, C., Hart, J., & Lock, K. (2018). Increasing powers to reject licences to sell alcohol: Impacts on availability, sales and behavioural outcomes from a novel natural experiment evaluation. Preventive medicine, 116, 87–93. https://doi.org/10.1016/j.ypmed.2018.09.010
- 18. Veitch, J., Salmon, J., Crawford, D., Abbott, G., Giles-Corti, B., Carver, A., & Timperio, A. (2018). The REVAMP natural experiment study: the impact of a play-scape installation on park visitation and park-based physical activity. International *Journal of Behavioral Nutrition and Physical Activity*, 15(10), 1-14. https://doi.org/10.1186/s12966-017-0625-5
- 19. Auchincloss, A. H., Michael, Y. L., Kuder, J. F., Shi, J., Khan, S., & Ballester, L. S. (2019). Changes in physical activity after building a greenway in a disadvantaged urban community: A natural experiment. *Preventive Medicine Reports*, 15, 100941. https://doi.org/10.1016/j.pmedr.2019.100941
- 20. Cohen, D. A., Han, B., Isacoff, J., Shulaker, B., & Williamson, S. (2019). Renovations of neighbourhood parks: long-term outcomes on physical activity. *Journal of Epidemiology & Community Health*, 73(3), 214-218. https://doi.org/10.1136/jech-2018-210791
- 21. Hosford, K., Winters, M., Gauvin, L., Camden, A., Dubé, A. S., Friedman, S. M., & Fuller, D. (2019). Evaluating the impact of implementing public bicycle share programs on cycling: the International Bikeshare Impacts on Cycling and Collisions Study (IBICCS). International Journal of Behavioral Nutrition and Physical Activity, 16(107), 1-11. https://doi.org/10.1186/s12966-019-0871-9
- 22. McGavock, J., Brunton, N., Klaprat, N., Swanson, A., Pancoe, D., Manley, E., ... & Hobin, E. (2019). Walking on water—a natural experiment of a population health intervention to promote physical activity after the winter holidays. *International Journal of Environmental Research and Public Health*, 16(19), 3627. https://doi.org/10.3390/ijerph16193627
- 23. Mölenberg, F. J., Noordzij, J. M., Burdorf, A., & van Lenthe, F. J. (2019). New physical activity spaces in deprived neighborhoods: Does it change outdoor play and sedentary behavior? A natural experiment. *Health & Place*, 58, 102151. https://doi.org/10.1016/j.healthplace.2019.102151

- 23. Dalton, A.M., & Jones, A.P. (2020). Residential neighbourhood greenspace is associated with reduced risk of cardiovascular disease: a prospective cohort study. *PLoS One*, 15(1), e0226524. https://doi.org/10.1371/journal.pone.0226524
- 24. Pearson, A. L., Pfeiffer, K. A., Gardiner, J., Horton, T., Buxton, R. T., Hunter, R. F., ... & McDade, T. (2020). Study of active neighborhoods in Detroit (StAND): study protocol for a natural experiment evaluating the health benefits of ecological restoration of parks. *BMC Public Health*, 20(638), 1-14. https://doi.org/10.1186/s12889-020-08716-3
- 25. Hunter, R. F., Adlakha, D., Cardwell, C., Cupples, M. E., Donnelly, M., Ellis, G., ... & Tully, M. A. (2021). Investigating the physical activity, health, wellbeing, social and environmental effects of a new urban greenway: a natural experiment (the PARC study). International Journal of Behavioral Nutrition and Physical Activity, 18(142), 1-19. https://doi.org/10.1186/s12966-021-01213-9
- 26. Auchincloss, A. H., Niamatullah, S., Adams, M., Melly, S. J., Li, J., & Lazo, M. (2022). Alcohol outlets and alcohol consumption in changing environments: prevalence and changes over time. *Substance Abuse Treatment, Prevention, and Policy*, 17(1), 7. https://doi.org/10.1186/s13011-021-00430-6
- 27. Kelly, C., Clennin, M., & Hughey, M. (2022). A Natural Experiment: Results of Community-Designed Park Improvements on Park Use and Physical Activity. *Health Promotion Practice*, 23(4), 577-582. https://doi.org/10.1177/15248399211026265
- 28. McGavock, J., Hobin, E., Prior, H. J., Swanson, A., Smith, B. T., Booth, G. L., ... & Burchill, C. (2022). Multi-use physical activity trails in an urban setting and cardiovascular disease: a difference-in-differences analysis of a natural experiment in Winnipeg, Manitoba, Canada. *International Journal of Behavioral Nutrition and Physical Activity*, 19(1), 34. https://doi.org/10.1186/s12966-022-01279-z
- 29. Charreire, H., Conti, B., Bauchard, L., Cissé, N. A., Perignon, M., Rollet, P., ... & Urbasanté Study Group. (2023). A natural experiment to assess how urban interventions in lower socioeconomic areas influence health behaviors: the UrbASanté study. *BMC Public Health*, 23(1), 498. https://doi.org/10.1186/s12889-023-15388-2
- 30. Lovasi, G. S., Boise, S., Jogi, S., Hurvitz, P. M., Rundle, A. G., Diez, J., ... & Siscovick, D. S. (2023). Time-Varying Food Retail and Incident Disease in the Cardiovascular Health Study. *American Journal of Preventive Medicine*, 64(6), 877-887. https://doi.org/10.1016/j.amepre.2023.02.001
- 31. Valmayor, S., González, K., López, M. J., Lacera, P., Giménez, P., Rumín-Caparrós, A., ... & Díez, E. (2024). Evaluation of a smoke-free beaches intervention in Barcelona: a quasi-experimental study. *Tobacco Control*, 33(6), 820-824. https://doi.org/10.1136/tc-2022-057873